3x^2+14x+12=0

Simple and best practice solution for 3x^2+14x+12=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+14x+12=0 equation:


Simplifying
3x2 + 14x + 12 = 0

Reorder the terms:
12 + 14x + 3x2 = 0

Solving
12 + 14x + 3x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
4 + 4.666666667x + x2 = 0

Move the constant term to the right:

Add '-4' to each side of the equation.
4 + 4.666666667x + -4 + x2 = 0 + -4

Reorder the terms:
4 + -4 + 4.666666667x + x2 = 0 + -4

Combine like terms: 4 + -4 = 0
0 + 4.666666667x + x2 = 0 + -4
4.666666667x + x2 = 0 + -4

Combine like terms: 0 + -4 = -4
4.666666667x + x2 = -4

The x term is 4.666666667x.  Take half its coefficient (2.333333334).
Square it (5.444444448) and add it to both sides.

Add '5.444444448' to each side of the equation.
4.666666667x + 5.444444448 + x2 = -4 + 5.444444448

Reorder the terms:
5.444444448 + 4.666666667x + x2 = -4 + 5.444444448

Combine like terms: -4 + 5.444444448 = 1.444444448
5.444444448 + 4.666666667x + x2 = 1.444444448

Factor a perfect square on the left side:
(x + 2.333333334)(x + 2.333333334) = 1.444444448

Calculate the square root of the right side: 1.201850427

Break this problem into two subproblems by setting 
(x + 2.333333334) equal to 1.201850427 and -1.201850427.

Subproblem 1

x + 2.333333334 = 1.201850427 Simplifying x + 2.333333334 = 1.201850427 Reorder the terms: 2.333333334 + x = 1.201850427 Solving 2.333333334 + x = 1.201850427 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + x = 1.201850427 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + x = 1.201850427 + -2.333333334 x = 1.201850427 + -2.333333334 Combine like terms: 1.201850427 + -2.333333334 = -1.131482907 x = -1.131482907 Simplifying x = -1.131482907

Subproblem 2

x + 2.333333334 = -1.201850427 Simplifying x + 2.333333334 = -1.201850427 Reorder the terms: 2.333333334 + x = -1.201850427 Solving 2.333333334 + x = -1.201850427 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.333333334' to each side of the equation. 2.333333334 + -2.333333334 + x = -1.201850427 + -2.333333334 Combine like terms: 2.333333334 + -2.333333334 = 0.000000000 0.000000000 + x = -1.201850427 + -2.333333334 x = -1.201850427 + -2.333333334 Combine like terms: -1.201850427 + -2.333333334 = -3.535183761 x = -3.535183761 Simplifying x = -3.535183761

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.131482907, -3.535183761}

See similar equations:

| 5k+1=3k+1k-3.8 | | 13=3/8(10x+24) | | 32n+n=0 | | 5=5/2(3x+4) | | x^2-35x+70=0 | | 6x+4+5[x+6]=56 | | 14-(2q+5q)=-2q+9 | | -2+(4y-3)=6 | | -5u=-u+8 | | .83333k=.5714 | | 12m+7=8n+15 | | 4n-3+5n+2=8 | | -8(-4r+18)=20r | | 32+16o=48 | | 3[x+2]+4[2x+1]=6x+20 | | -2(-12k-4)=16k | | -(-10j+4)=4(4+5j) | | 2x=7-x^2 | | 32+16oz=43 | | 2(5-3G)+9g=28 | | 2(2s-3)=271 | | -15+7x=7x-15 | | 2x^2-4xy+2y^2-5x-5=0 | | -4(4n+2)=-20n | | 0=x^2-16x-28 | | letp(x)=5x^3+10x^2-x+9 | | 7c=13c+3(-c-1) | | 4(3x+5)-8=36 | | 3x-4+2x-9+1x-2=-2 | | 3+5g=18-9(2g-6) | | 5y^2-8y=27 | | 7r=-35 |

Equations solver categories